Step of Proof: bool_sq
12,41
postcript
pdf
Inference at
*
1
1
2
I
of proof for Lemma
bool
sq
:
1.
x
: ?Unit
2.
y
: ?Unit
3.
x
=
y
4. case
x
of inl(
x
) =>
x
| inr(
x
) =>
x
= case
y
of inl(
x
) =>
x
| inr(
x
) =>
x
5. case
x
of inl(
x
) => True | inr(
x
) => False = case
y
of inl(
x
) => True | inr(
x
) => False
6.
(True = False)
x
~
y
latex
by ((((((((((D 1)
CollapseTHEN (D 2))
)
CollapseTHEN (AbReduce 4))
)
CollapseTHEN (
C
AbReduce 5))
)
CollapseTHEN (Try ((D 6)
CollapseTHEN (Eq))
))
)
CollapseTHEN (
C
(Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
.
Definitions
t
T
,
,
P
Q
,
A
,
False
,
Unit
Lemmas
unit
wf
origin